Speaker Identification using Power Distribution in Frequency Spectrum
نویسندگان
چکیده
This paper presents a brief overview of the Speaker recognition process, its trends and applications. Further a simple technique based on the Euclidean distance comparison is proposed. The technique is applied for both text-dependent as well as text independent identification. Text dependent identification gives excellent results whereas text independent identification gives almost 80% matching accuracy.
منابع مشابه
A Critique on Power Spectrum – Area Fractal Method for Geochemical Anomaly Mapping
Power spectrum – area fractal (S-A fractal) method has been frequently applied for geochemical anomaly mapping. Some researchers have performed this method for separation of geochemical anomaly, background and noise and have delineated their distribution maps. In this research, surface geochemical data of Zafarghand Cu-Mo mineralization area have been utilized and some defects of S-A fractal me...
متن کاملQuery by Example of Speaker Audio Signals using Power Spectrum and MFCCs
Search engine is the popular term for an information retrieval (IR) system. Typically, search engine can be based on full-text indexing. Changing the presentation from the text data to multimedia data types make an information retrieval process more complex such as a retrieval of image or sounds in large databases. This paper introduces the use of language and text independent speech as input q...
متن کاملMusic Instrument Identification Using MFCC: Erhu as an Example
In the analysis of musical acoustics, we usually use the power spectrum to describe the difference between timbres from two music instruments. However, according to our experiments, the power spectrum cannot be used as effective features for erhu instrument identification. In this paper, we use MFCC (mel-scale frequency cepstral coefficients) as features for music instrument identification usin...
متن کاملText Independent Speaker Identification Model Using Finite Doubly Truncated Gaussian Distribution and Hierarchical Clustering
In Speaker Identification the goal is to determine which one of a group of a known voice with best matches with the one of the input voices. Modelling the speaker voices is an important consideration for many applications. In developing the model, it is customary to consider that the voice of the individual speaker is characterized with finite component Gaussian mixture model. However, the Mel ...
متن کاملSignificance of formants from difference spectrum for speaker identification
In this paper, we describe a prototype speaker identification system using auto-associative neural network (AANN) and formant features. Our experiments demonstrate that formants extracted from difference spectrum perform significantly better than formants extracted from normal spectrum for the task of speaker identification. We also demonstrate that formants from difference spectrum provide com...
متن کامل